$7^{\text {th }}$ Grade Math Notebook

Index

Chapter 1: Ratios and Proportional Reasoning pg. 3
Chapter 2: Percents pg. 22
Chapter 3: Integers pg. 39
Chapter 4: Rational Numbers pg. 50
Chapter 5: Expressions pg. 67
Chapter 6: pg.
Chapter 7: pg.
Chapter 8: pg.
Chapter 9: pg.
Chapter 10: pg.

- Blank Powerpoint Note Links -
Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5

Chapter 1

Adrienne biked 24 miles in 4 hours. If she biked at a constant speed, how many miles did she ride in one hour.

Find the unit price if it costs $\$ 2$ for eight juice boxes.

A ratio that compares

\qquad quantities with different kinds of units is called a \qquad .

When a rate is simplified so that it has a denominator of \qquad unit, it is called a

The prices of 3 different bags of dog food are given in the table. Which size bag has the lowest price per pound rounded to the nearest cent?

Lexi painted 2 faces in 8 minutes at the Crafts Fair. At this rate, how many faces can she paint in 40 minutes?

Bag Size	Price
40	49.00
20	23.44
8	9.88

Find the unit rate. Round to the nearest hundredth if necessary.
$\$ 300$ for 6 hours

Find the unit price if a 4-pack of mixed fruit sells for $\$ 2.12$.

A ratio that compares \qquad quantities with different kinds of units is called a \qquad .

When a rate is simplified so that it has a denominator of \qquad unit, it is called a

Tito wants buy some peanut butter to donate to the locale food pantry. Tito wants to buy as much peanut butter as possible. Which brand should he buy?

Brand	Sale Price
Nutty	12 oz for $\$ 2.19$
Grandma's	$18 o z ~ f o r ~$ $\$ 2.79$
Bee's	$28 o z ~ f o r ~$ $\$ 4.69$
Save-A-Lot	40 oz for $\$ 6.60$

After 3.5 hours, Pasha had traveled 217 miles. If she travels at a constant speed, how far will she have traveled after 4 hours?

Simplify $\frac{\frac{1}{4}}{2}$
Simplify $\frac{2}{\frac{1}{2}}$

Fractions like \qquad are called

Tia is painting her house. She paints $34 \frac{1}{2}$ square feet in $\frac{3}{4}$ hour. At this rate, how many square feet can she paint each hour?
fractions.
Complex fractions are fractions with a numerator, denominator, or bother that are also \qquad .
Complex fractions are simplified when both the \qquad and
\qquad are
\qquad .

When the \qquad of a complex fraction represents different units, you can find the unit rate.

On Javier's soccer team, about
$33 \frac{1}{3} \%$ of the players have scored a goal. Write
$33 \frac{1}{3} \%$ as a fraction in the simplest form.
Simplify $\frac{\frac{2}{4}}{2}$

Simplify $\frac{2}{\frac{2}{3}}$

Fractions like \qquad are called

Josiah can jog 1 $\frac{1}{3}$ miles in $\frac{1}{4}$ hour. Find his average speed in miles per hour.
fractions.
Complex fractions are fractions with a numerator, denominator, or bother that are also \qquad .
Complex fractions are simplified when both the \qquad and
\qquad are
\qquad .

When the \qquad of a complex fraction represents different units, you can find the unit rate.

A county sales tax is $3 \frac{1}{2} \%$. Write the percent as a fraction in simples \dagger form.

A remote control car travels at a rate of 10 feet per second. How many inches per second is this?

You can convert one rate to an rate by by a unit ratio or its reciprocal. When you convert rates, you include the units in your computation.

The process of including units of as factors when you compute is called dimensional per second. How many feet per hour is this?
Marvin walks at a speed of 7 feet

The average speed of one team in a relay race is about 10 miles per hour. What is this speed in feet per second?

Water weighs about 8.34 pounds per gallon. About how many ounce per gallon is the weight of the water.

A gull can fly at a speed of 22 miles per hour. About how many feet per hour can the gull fly?

You can convert one rate to an rate by by a unit ratio or its reciprocal. When you convert rates, you include the units in your computation.

The process of including units of

An AMTRAK train travels at 125 miles per hour. Convert the speed to miles per minute. Round to the nearest tenth.
as factors when you compute is called dimensional

$$
\frac{10 \mathrm{ft}}{1 \mathrm{~s}}=\frac{10 \mathrm{ft}}{1 \mathrm{~s}} \frac{12 \mathrm{in}}{1}=\frac{10 \quad 12 \mathrm{in}}{1 \mathrm{~s} ~}=\frac{120 \mathrm{in}}{1 \mathrm{~s}}
$$

Lorenzo rides his bike at a rate of 5 yards peer second.

About how many miles peer hour can Lorenzo ride his bike? (Hint: 1 mile = 1,760 yards)

Andrew earns $\$ 18$ per hour for mowing lawns. Is the amount of money he earns proportional to the number of hours he spends mowing?

Explain: \qquad

Earnings (\$)				
Time (h)	1	2	3	4

Uptown Tickets charges $\$ 7$ per baseball game ticket plus a $\$ 3$ processing fee per order. Is the cost of an order proportional to the number of tickets ordered?

Explain: \qquad

Two quantities are proportional if they have a \qquad ratio or rate. For
relationships in which this ratio is not , the two quantities are nonproportional.
rations all have

You can use the recipe shown to make a fruit punch. Is the amount of sugar used proportional to the amount of mix used?
the same value.

Explain: \qquad

Cups of Sugar	$1 / 2$	1	$11 / 2$	2
Envelopes of Mix	1	2	3	4

Pages Gabriel Read	3	4	7
Time (min)	5	10	15

Pages Martin Read	2	4	6
Time (min)	5	10	15

At Lakeview Middle School, there are 2 homeroom teachers assigned to every 48 student. Is the number of student at this school proportional to the number of teachers?

Explain: \qquad

Homeroom Teachers	2	4	6
Students			

The Vista Marina rents boats for $\$ 25$ per hour. In addition to the rental fee, there is a $\$ 12$ charge for fuel. Is the number of hours you can rent the boat proportional to the total cost?

Explain: \qquad

Cost (\$)	37	62		
Tickets Ordered	1	2	3	4

Two quantities are proportional if they have a \qquad ratio or rate. For
relationships in which this ratio is not , the two quantities are nonproportional.
rations all have

At the beginning of the year, Isabel had $\$ 120$ in the bank. Each week, she deposited another $\$ 20$. Is her account balance proportional to the number of weeks of deposits? Use the table below.

Explain: \qquad
Explain:
Which situation represents a proportional relationship between the hours worked and amount earned for Matt and Jane? the same value.
\qquad

Time (wk)	1	2	3
Ballance (\$)			

Matt's Earnings	12	20	31
Time (h)	1	2	3

Jane's Earnings	12	24	36
Time (h)	1	2	3

The slowest mammal on Earth is the tree sloth. It moves at a speed of 6 feet per minute. Determine whether the number of feet the sloth move is proportional to the number of minutes it moves by graphing on the coordinate plane. Explain your reasoning.
Explain: \qquad

Time	Distance
0	0
1	
2	
3	

The cost of renting video games from Games Inc. is shown in the table. Determine whether the cost is proportional to the number games rented by graphing o the coordinate plane. Explain your reasoning.

Number of Games	Cost (\$)
1	3
2	5
3	7
4	9

Which batting cage shown in the graph to the right represents a proportional relationship between the number of pitchers thrown and the cost? Softball Plus or Fun Center?

Explain: \qquad
The coordinate plane is formed when two number lines \qquad at their zero points. The number lines separate the called plane into four regions

An \qquad pair is a pair of numbers used to \qquad or graph points on the coordinate plane.

Another way to determine whether two quantities are \qquad is
to graph the quantities on the coordinate plane. If the graph of the two quantities is a \qquad line through
the origin, then the two quantities are proportional.
\qquad

James earns $\$ 5$ an hour babysitting. Determine whether the amount of money James earns babysitting is proportional to the number of hours he babysits by graphing on the coordinate plane. Explain your reasoning.

Explain: \qquad
\qquad

Time	Earnings
0	0
1	
2	
3	

The table to the right shows the number of Calories an athlete burned per minute of exercise. Determine whether the number of Calories burned is proportional to the number of minutes by graphing on the coordinate plane. Explain your reasoning.

Explain:
The coordinate plane is formed when two number lines \qquad at their zero points. The number lines separate the plane into four regions called \qquad .
An \qquad pair is a pair of numbers used to \qquad or graph points on the coordinate plane.

Another way to determine whether two quantities are \qquad is to graph the quantities on the coordinate plane. If the graph of the two quantities is a \qquad line through the origin, then the two quantities are

Minutes	Calories
0	0
1	4
2	8
3	13

\qquad

After 2 hours, the air temperature had risen $7^{\circ} \mathrm{F}$. Write and solve a proportion to find the amount of time it will take at this rate for the temperature to rise an additional $13^{\circ} \mathrm{F}$.

temperature

 timeIf the ratio of Type O to non-Type O donors at a blood drive was 37:43, how many donors would be Type 0 , out of 300 donors?
type O donors total donors

A proportion is an stating that two ratios are rates are . Consider the
following proportion:

$$
\frac{a}{b}=\frac{c}{d}
$$

$$
\underline{a} \cdot b d=\underline{c} \cdot b d
$$

b

$$
a d=b c
$$

The products $a b$ an $b c$ are called the products of this proportion.
The cross products are \qquad _.

You can also use the \qquad rate
\qquad expressing the relationship between two proportional quantities.
to write an
Olivia brought 6 containers of yogurt for $\$ 7.68$. Write an equation relating the cost c to the number of yogurts y. How much would Olivia pay for 10 yogurts at this same rate?
cost in dollars containers of yogurt
\qquad
$\frac{\text { cost in dollars }}{\text { containers of yogurt }}$

Jaycee bought 8 gallons of gas for $\$ 31.12$. Write an equation relating the cost c to the number of gallons g of gas. How much would Jaycee pay for 11 gallons at this same rate?
price gallons

$$
\frac{x}{4}=\frac{9}{10}
$$

The ratio of $7^{\text {th }}$ grade students to $8^{\text {th }}$ grade students in a soccer league is $17: 23$. If there are 200 students in all, how many are in the $7^{\text {th }}$ grade?
$\frac{7^{\text {th }} \text { graders }}{\text { total students }}$
\qquad

A proportion is an stating that two ratios are rates are . Consider the
following proportion:

$$
\frac{a}{b}=\frac{c}{d}
$$

$\underline{a} \cdot b d=\underline{c} \cdot b d$
b

$$
a d=b c
$$

The products $a b$ an $b c$ are called the products of this proportion.
The cross products are \qquad
You can also use the \qquad rate
to write an \qquad expressing the relationship between two proportional quantities.

Olivia typed 2 pages in 15 minutes. Write an equation relating the number of minutes m to the umber of pages p typed. How long will it take her to type 10 pages at this rate?
minutes
pages

The table shows the amount of money a booster club makes. washing cars for a fundraiser. Use the information to find the constant rate of change in dollars per car.
change in money change in cars

Number	Money
5	40
10	80
15	120
20	160

The graph represents the distance traveled while driving on a highway. Find the constant rate of change.

change in miles change in hours

A rate of change is a rate that describes how one quantity in relation to \qquad In a \qquad relationship, the rate of change between any two quantities is the same. A linear relationship has a rate of change.

You can use a table to find a rate of change.

You can also use a to find a constant rate of change and to points on the graph.

Explain what the points $(0,0)$ and $(1,60)$ represent in the previous problem.

The table shows the number of miles a plane traveled while in flight. Use the information to find the approximate constant rate of change in miles per minute.
change in distance change in time

Time	Distance
30	290
60	580
90	870
120	1160

The table shows thee number of students that buses can transport. Use the table to find the constant rate of change in students per school bus.

change in \# of students	Buses	Students
change in \# of buses	2	144
	3	216
4	288	
5	360	

A rate of change is a rate that describes how one quantity in relation to \qquad In a \qquad relationship, the rate of change between any two quantities is the same. A linear relationship has a rate of change.

You can use a table to find a rate of change.

You can also use a to find a constant rate of change and to points on the graph.

Explain what the points $(0,0)$ and $(1,30)$ represent in the previous problem.

The table and graph below show the hourly charge to rent a bicycle at two different stores. Which store charges more per bicycle. Explain
change in distance change in time

Explain: \qquad

The table below shows the relationship between the number of seconds y it takes to hear thunder after a lightning strike the miles x you are from the lightning. Graph the data and find the slope. Explain what the slope represents.
 slope $=$ \qquad

Explain: \qquad

Slope is the rate of between any two point on a line.

In a \qquad relationship, the vertical change (_-value) per unit of horizontal change (__-value) is always the
\qquad . This ratio is called the of the function. The rate of change, or rate, is the same as the slope of the related linear relationship.

The slope tells how \qquad the line is. The vertical change is called the while the horizontal change is called the \qquad . the numerical value of the slope and interpret it in words

slope $=$ \qquad

Explain: \qquad
\qquad

Graph the data about plant height for a science fair project. Then find the slope of the line. Explain what the slope represents.

Week	Height
1	1.5
2	3
3	4.5
4	6

Explain: \qquad
\qquad
\qquad
\qquad

Slope is the rate of \qquad between any two point on a line.

In a \qquad relationship, the vertical change (__-value) per unit of horizontal change (__ -value) is always the
\qquad . This ratio is called the of the function. The rate of change, or

Jessica has a

balance of $\$ 45$ on her cell phone account. She adds $\$ 10$ each week for the next four weeks. Graph the account balance versus time. Find the numerical value of the slope and interpret it in words.

The height of the water ass a pool is being filled is shown in the graph. Determine the rate in inches per minute.

The equation $y=10 x$ represents the amount of money y Julio earns for x hours of work. Identify the constant of proportionality. Explain what it represents in this situation. Explain: \qquad

A \qquad relationship is a direct \dagger variation when the ration of y to x is a \qquad k. We say \qquad varies directly with \qquad .

$$
y=k x
$$

When two \qquad quantities have a ratio, their relationship is called a direct variation. The constant ratio is called the \qquad also known as the proportionality.

Not all situations with a rate of change are proportional relationships, and not all \qquad direct variations.
of variation,
\qquad of
\qquad functions are

Determine whether the linear relationship is a direct variation. If so, state the constant of proportionality.

Time	Wages
1	12
2	24
3	26
4	48

Explain:

Two minutes after a diver enter the water, he has descended 52 feet. After 5 minute, he has descended 130 feet. At what rate is the scuba diver descending?
depth time

The distance y traveled in miles by the Chang family in x hours is represented by the equation $y=55 x$. Identify the constant of proportionality. Then explain what it represents.

Explain: \qquad

A \qquad relationship is a direct variation when the ration of y to x is a \qquad k. We say \qquad varies directly with \qquad .

$$
y=k x
$$

When two \qquad quantities have a

$$
8-3
$$ is called a direct variation. The constant ratio is called the \qquad of variation, also known as the \qquad of proportionality.

Not all situations with a \qquad rate of change are proportional relationships, and not all \qquad functions are direct variations.

The number of cake baked varies directly with the number of hours the caterers work. What is the ratio of cakes baked to hours worked?

Chapter 2

Find 5% of 300 by writing the percent as a fraction.

Find 25% of 180 by writing the percent as a decimal.

To find the percent of a such as 60% of
2000, you can use either of the following methods.

- Write the percent as a and then multiply
- Write the percent as a
\qquad then multiply

Find 150% of 28 by writing the percent as a decimal.

Percents that are greater than \qquad \% can be written as \qquad fractions, \qquad numbers, or decimals greater than

Refer to the graph. If 275 students took the survey, how many can be expected to have 3 television each in their houses?

0						2%
1						9%
2						17%
3						23%
4						20%
>4						25%

Find 25% of 180 by writing the percent as a decimal.

To find the percent of a such as 60% of
2000, you can use either of the following methods.

- Write the percent as a and then multiply
- Write the percent as a
then multiply
Find 120% of 75 by writing the percent as a fraction.

Percents that are greater than \qquad \% can be written as \qquad fractions, \qquad numbers, or decimals greater than \qquad .

Mr. Sudimack earned a 4\% commission on the sale of a hot tub that cost \$3,755. How much did he earn?

Jodi has paid 62% of the $\$ 500$ she owes Estimate 122% of 50. for her loan.

Sometimes an \qquad answer is not needed when using
\qquad . One way to the percent of a is to use a

There are 789 seventh grade students at Washington Middle School. About $\frac{1}{4} \%$ of the seventh grade students have travelled overseas.
What is the approximate number of seventh grade students that have traveled overseas? Explain.

Dante plans to put 80% of his paycheck into aa saving account and spend the other 20%. His paycheck this week was $\$ 295$. About how much money will he put into hiss savings account?

Sometimes an \qquad answer is not needed when using
\qquad . One way to the percent of a is to use a

A county receives $\frac{3}{4} \%$ of a state sales tax. About how much money would the country receive from the sale of a computer that costs $\$ 1,020$?

$$
70 \%=7 \cdot 10 \%
$$

Of the 78
teenagers at a youth camp, 63\% have birthdays in the spring. About how many teenagers have birthdays in the spring?

In a percent \qquad , one ratio or fraction \qquad part of a quantity to the quantity. The other ratio is the equivalent written as a with a denominator

18 is 25% of what number?

$$
=\frac{n}{100}
$$

In a percent \qquad , one ratio or fraction \qquad part of a quantity to the quantity. The other ratio is the equivalent written as a with a denominator

40\% of what number is 26 ? -
of \qquad .

What number is 12% of 150 ?
part $=$ percent \cdot whole

21 is what percent of 40 ?
part $=$ percent \cdot whole

part $=$ percent \cdot whole
You can use the percent to solve problems that involve percents.

13 is 26% of what number?

3 is 50% of 6
\qquad $=$ \qquad \longrightarrow
\qquad
 that 25% of people aged 18-24 gave up their home phone and only use
a cell phone. If 3,264 people only use a cell phone, how many people were surveyed?
part $=$ percent \cdot whole
$=\ldots \cdot \mathrm{W}$
\qquad
\qquad

$$
=W
$$

part $=$ percent \cdot whole
\qquad - W

What number is 72% of 50 ?
part $=$ percent \cdot whole
\qquad
= W

Find the percent of change in the cost of gasoline from 1970 when it cost $\$ 1.30$ a gallon to 2010 when is cost $\$ 2.95$ a gallon.
amount of increase:
percent of change $=$ amount of change
percent of change $=$
percent of change $=$

Ahmed wants to practice freethrows. He estimates the distance from the free-throw line to the hoop and marks it with chalk.
Ahmed's estimate was 13.5 feet. The actual distance should be 15 feet. Find the percent error.
amount of error: \qquad - \qquad $=$ \qquad
percent of error $=\frac{\text { amount of error }}{\text { actual amount }}$
percent of error $=$ \qquad
\qquad $=$ \qquad \%
\qquad - \qquad $=$ \qquad original amount
\qquad
\qquad $=$ \qquad \%
percent of change $=$
When you compare the amount of
\qquad to the amount in a ratio, you are finding the percent of . The percent of change
amount. is based on the \qquad . The percent of change
amount.

Yusuf bought a DVD recorder for \$280. Now, it is on sale for $\$ 220$. Find the percent of change in the price. Round to the nearest whole percent if necessary. amount of decrease: \qquad - \qquad $=$ \qquad
percent of change $=$ amount of change original amount
percent of change $=$ \qquad

$$
=
$$

\qquad

percent of change $=$ amount of change
 percent of change $=\frac{\text { amount of change }}{\text { original amount }}$

The percent error is a \qquad that compares the \qquad of an estimate, or amount of , to the \qquad amount.
percent of error $=\frac{\text { amount of error }}{\text { actual amount }}$ $=$ \qquad \%
\qquad
Find each percent of change. Round to the nearest whole percent if necessary. State whether the percent of change is an increase or decrease.
amount of change: percent of change $=$
percent of change $=$

30 inches to 24 inches
\qquad - \qquad $=$ \qquad percent of change $=\frac{\text { amount of change }}{\text { original amount }}$
\qquad
\qquad $=$ \qquad \%

Find the percent of change from 10 yards to 13 yards.
amount of increase: percent of change $=$ amount of change
percent of change $=$
percent of change $=$

Find the percent error if the estimate is $\$ 230$ and the actual amount is $\$ 245$.
Round to the nearest whole percent.
\qquad - \qquad $=$ \qquad original amount
\qquad
\qquad $=$ \qquad \%
percent of change $=$ \qquad $=$ \qquad \%

When you compare the amount of
\qquad to the
\qquad amount in a ratio, you are finding the percent of . The percent of change
amount. is based on the \qquad . The percent of change
amount.

$$
\text { percent of change }=\frac{\text { amount of change }}{\text { original amount }}
$$

The price of a radio was $\$ 20$. It is on sale for $\$ 15$. What is the percent of change in the price of a radio.
amount of decrease: \qquad - \qquad $=$ \qquad percent of change $=$ amount of change original amount
percent of change $=$ \qquad The percent error is a \qquad that compares the \qquad of an estimate, or amount of , to the \qquad amount.

$$
\text { percent of error }=\frac{\text { amount of error }}{\text { actual amount }}
$$

Find each percent of change. Round to the nearest whole percent if necessary. State whether the percent of change is an increase or decrease.
amount of error: \qquad - \qquad $=$ \qquad
percent of error $=\frac{\text { amount of error }}{\text { actual amount }}$ percent of error $=$ \qquad amount of change: \qquad - \qquad $=$ \qquad percent of change $=\frac{\text { amount of change }}{\text { original amount }}$
percent of change $=$ \qquad
percent of error $=$ \qquad $=$ \qquad \%
\qquad $=$ \qquad \%

Drew wants to buy exercise equipment that costs $\$ 140$ and the sales tax is 5.75%. What is the total cost of the equipment?
part $=$ percent \cdot whole $p=$ \qquad - \qquad

$$
p=
$$

\qquad -
\qquad
Sales tax is an \qquad amount of money charged on items that people buy. The total cost of an item is the price plus the sales tax.

A tip or gratuity is a \qquad amount of money in return for a service. The total price is the regular price of the service plus \qquad .

A store sells items for more than it pays for those items. The amount of
\qquad is called the . The \qquad price is the amount the customer pays for an item.

Find the total cost of a spa treatment of \$42 including 6\% tax and 20\% tips.

A customer wants to tip 15% on a restaurant bill that is $\$ 35$. What will be the total bill with tip?

part $=$ percent \cdot whole

$$
p=
$$

$ـ_{1}^{+}+\ldots=$

What is the total cost of a sweatshirt if the regular price is $\$ 42$ and the sales tax is $5 \frac{1}{2} \%$?
part $=$ percent \cdot whole
p = \qquad - \qquad

$$
p=
$$

\qquad
\qquad
$+$

Sales tax is an \qquad amount of money charged on items that people buy. The total cost of an item is the price plus the sales tax.

A tip or gratuity is a \qquad amount of money in return for a service. The total price is the regular price of the service plus \qquad .

A store sells items for more than it pays for those items. The amount of
\qquad is called the
\qquad The \qquad price is the amount the customer pays for an item.

Scott wants to tip his taxicab driver 20\%. If his commute costs $\$ 15$, what is the total cost?
part $=$ percent \cdot whole
$p=$ \qquad
\qquad $p=$
$__{-}^{+}+\ldots=$

A DVD normally cost $\$ 22$. This week it is on sale for 25% off the original price. What is the sale price of the DVD?
part $=$ percent \cdot whole

$$
p=
$$

A boogie board that has a regular price of $\$ 69$ is on sale at a 35% discount. What I the sale price with 7% tax?

part $=$ percent \cdot whole
$\mathrm{p}=$ \qquad --
\qquad $+$ \qquad
\qquad
or markdown is the by which the price of an item is . The sale price is the regular price \qquad the discount.

If you \qquad money from a bank, you pay the bank

A cell phone is on sale for 30% off. If the sale price is $\$ 239.89$, what is the original price?
\qquad _.

Clothes are Us and Ratcliffe's are having sales. At Clothes Are Us, a pair of sneakers is on sale for 40% off the regular price of $\$ 50$. At Radcliffe's, the same brand of sneakers is discounted by 30% off of the regular price of $\$ 40$. Which store has the better sale price? Explain

Clothes Are Us
part $=$ percent \cdot whole $\mathrm{p}=$ \qquad .
\qquad = -
\qquad
Explain:
Ratcliffe's
part $=$ percent \cdot whole $p=$ \qquad
\qquad -
\qquad

A shirt is regularly priced at $\$ 42$. It is on sale for 15% of of the regular price. What is the sale price of the shirt?
part $=$ percent \cdot whole

$$
p=
$$

A CD that has a regular price of $\$ 15.50$ is on sale at 25% discount. What is the sale price with 6.5\% tax.

Discount
part $=$ percent \cdot whole
$\mathrm{p}=$ \qquad .
\qquad
\qquad - \qquad $=$ \qquad

Tax
part $=$ percent \cdot whole
$p=$ \qquad
$+$ \qquad $=$ \qquad

or markdown is the by which the price of an item is . The sale price is
the regular price
the discount.
If you \qquad money from a bank, you pay the bank

Clothes are Us and Ratcliffe's are having sales. At Clothes Are Us, a pair of sneakers is on sale for 50% off the regular price of $\$ 50$. At Ratcliffe's, the same brand of sneakers is discounted by 30% off of the regular price of $\$ 40$. Which store has the better sale price? Explain

Clothes Are Us
part $=$ percent \cdot whole $\mathrm{p}=$ \qquad $=$ =_ $-$

$$
\longrightarrow \square
$$

\qquad
Ratcliffe's
part $=$ percent \cdot whole $p=$ p \qquad -
\qquad

Explain:

Chapter 2: Percents - Lesson 8: Financial Literacy - Simple Interest	
Arnold puts $\$ 580$ into a savings account. The account pays 3% simple interest. How much interest will he earn in 6 months? $I=\left(\begin{array}{c} \mathrm{I}=\mathrm{prt} \\ \mathrm{I}=\ldots \\ \left(\ldots __\right)\left(__\right. \end{array}\right)$ If you have a \qquad the bank pays you the use of your m I=prt to fin the \qquad	Rondell's parents borrow $\$ 6,300$ from the bank for a new car. The interest rate if 6% per year. How much simple interest will they pay if they take 2 years to repay thee loan? \qquad account, \qquad for . Use the formula \qquad of at will be earned. tarting money)
Derrick's dad bought new tires for $\$ 900$ using a credit card. His card has an interest rate of 19%. If he has no other charges on his card and does not make you pay the bank in their money. You al company if you hav Use the formula I= of interest owed. a payment, how much after one month? $I=\binom{\mathrm{I}=\mathrm{prt}}{\mathrm{I}=\ldots}(\ldots \quad)\left(__\right)$ $ـ^{+}+\ldots$ \qquad	from a bank, st for the use of ay credit card unpaid balance. to find the amount Luis is taking out a car loan for $\$ 5,000$. He plans on paying off the car loan in 2 years. At the end of 2 years, Luis will have paid $\$ 300$ interest. What is the simple interest rate on the car loan.

Chapter 2: Percents - Lesson 8: Financial Literacy - Simple Interest	
Arnold puts \$580 into a savings account. The account pays 3% simple interest. How much interest will he earn in 5 years? If you have a \qquad the bank pays you the use of your m I=prt to fin the \qquad	Mrs. Hannover borrows \$1,400 at a rate of 5.5% per year. How much simple interest will she pay if it takes 8 months to repay the loan? \qquad account, \qquad for . Use the formula \qquad of t will be earned. tarting money) terest rate
An office manager charged $\$ 425$ worth of office supplies on aa credit card. The credit card has an interest rate of 9.9%. How much money will he owe at the end of one If you \qquad you pay the bank in their money. You al company if you hav Use the formula I= of interest owed. month if he makes no other charges on the card and does not make a payment $\begin{gathered} \mathrm{I}=\mathrm{prt} \\ \mathrm{I}=(\ldots \quad)\left(__\right)\left(___\right) \end{gathered}$ \qquad \qquad $=$ \qquad	from a bank, credit card unpaid balance. to find the amount Maggie is taking out a student loan for $\$ 2,600$. She plans on paying off the loan in 3 years. At the end of 3 years, Maggie will have paid $\$ 390$ in interest. What is the simple interest rate on the student loan? $\begin{gathered} \quad l=p r \dagger \\ =(\ldots) r(\ldots) \\ =(\ldots \quad=r \end{gathered}$

Chapter 3

Write an integer for the situation: an average temperature of 5 degrees below normal.

Graph the set of integers $\{4,-6,0\}$

Integers can be graphed on a
\qquad line. To graph a
\qquad on the line at its \qquad .

Evaluate the following expression.
$|-5|-|2|$

The \qquad value of a number is the distance between the
\qquad and
on a number line

Nick climbs 30 feet up a rock wall and then climbs 22 feet down to a landing area. The number of feet Nick climbs can be representing using the expression $|30|+|-22|$. How

Write an integer for the situation: an average rainfall of 5 inches above normal.

Graph the set of integers $\{-2,8,-7\}$

Integers can be graphed on a
\qquad line. To graph a
\qquad on the line at its \qquad .

Evaluate the following expression.
$2+|-3|$

The \qquad value of a number is the distance between the
\qquad and
on a number line

Evaluate the following expression.
$|-6|-5$

Find $(-3)+(-2)$.

To add integers with the sign, \qquad their values. The sum is
positive if \qquad integers are positive, and the sum is negative if integers are negative.

To add integers with signs, \qquad their value. The sum if
positive if the positive integer's absolute value is \qquad and the sum is negative if the negative integer's absolute value is
\qquad .

A roller coaster starts at point A. It goes up 20 feet, down 32 feet, and then up 16 feet to point B. Write an addition sentence to find the height at point B in relation to point A. Then find the sum and explain its meaning.

Find -10 + (-4).

To add integers with the sign, \qquad their values. The sum is
positive if \qquad integers are positive, and the sum is negative if integers are negative.

To add integers with signs, \qquad their value. The sum if
positive if the positive integer's absolute value is \qquad and the sum is negative if the negative integer's absolute value is
\qquad _.

The temperature is -3°. An hour later, it drops 6° and 2 hours later, it rises 4°. Write an addition expression to describe this situation. Then find the sum and explain its meaning.

Find 8-13.
Find -10-(-7).

To _an integer

Evaluate $x-y$ if $x=-6$ and $y=-5$.

The temperatures on the Moon very from $-173^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$. Find the difference between the maximum and minimum temperatures.

Find -10-7.
Find $4-(-12)$.

> To ___ an integer
\qquad it's additive

Evaluate m - n if
$m=-15$ and $n=8$.

Find $3(-5)$.
Find $-3(-4)(-2)$.

The product of \qquad integers with different signs is
\qquad .

The product of \qquad integers with the same sign is

Find $(-4)^{2}$.

Find -7(4).
Find $-7(-5)(-3)$.
\qquad .

The product of \qquad integers with the same sign is

Find -12(-4).

The product of
 \qquad integers with different signs is

\qquad .
maintenance fees for one year. Then find the product and explain its meaning.

Explanation: \qquad

Find $80 \div(-10)$.

$$
\text { Find }-14 \div(-7)
$$

The quotient of ___ integers with different signs is

The quotient of \qquad integers with the same sign is

Find $\frac{-28}{-7}$.

Find -55 .
Find $20 \div(-4)$.

The quotient of \qquad integers with different signs is
\qquad .

The quotient of \qquad integers with the same sign is

Evaluate $-16 \div x$ if $x=-4$

The average temperature in January for North Pole, Alaska, is
$-24^{\circ} \mathrm{C}$. Use the expression $\frac{9 C+160}{5}$
to find this temperature in degrees Fahrenheit. Found to the nearest degree. Then explain its meaning.

Chapter 4

Chapter 4: Rational Numbers - Lesson 1: Terminating and Repeating Decimals

Write each fraction or mixed number as a decimal.
$\frac{7}{20}$

Any \qquad can be expressed as a \qquad by dividing the numerator by the denominator.

The decimal form of a fraction is called a \qquad decimal. Repeating decimals can be represented using notation. In bar
Write the fractions as decimals.
$-\frac{1}{40}$ notation a bar is drawn only
\qquad the digit that repeat.

Find the fraction of the fish in the aquarium that are goldfish. Write in simplest form.

Fish	Amount
Guppy	0.25
Angelfish	0.4
Goldfish	0.15
Molly	0.2

Chapter 4: Rational Numbers - Lesson 1: Terminating and Repeating Decimals

Write each fraction or mixed number as a decimal.
$\frac{3}{10}$

Write each fraction or mixed number as a decimal.
$-6 \frac{1}{2}$

Any \qquad can be expressed as a \qquad by dividing the numerator by the denominator.

The decimal form of a fraction is called a \qquad decimal. Repeating decimals can be represented using notation. In bar

Write the fractions as decimals.
$\frac{3}{8}$

Fish	Amount
Guppy	0.25
Angelfish	0.4
Goldfish	0.15
Molly	0.2

Determine the fraction of the aquarium made up by each fish. Write the answer in simplest form.
guppy = \qquad angelfish $=$ \qquad molly $=$ \qquad

Chapter 4: Rational Numbers - Lesson 2: Compare and Order Rational Numbers
Fill in the \bigcirc with \langle,$\rangle , or =$ to make the sentence true.
$-1 \frac{5}{6} \bigcirc-1 \frac{1}{6}$

In Mr. Huang's class, 20% of students own roller shoes. In Mrs. Trevino's class 5 out of 29 students. own roller shoes. In which class does. a greater fraction of student own roller shoes?

A rational number is a \qquad that can be expressed as a
\qquad of \qquad integer
written as a fraction, in which the denominator is not \qquad .

A \qquad denominator is a common \qquad of the denominators of or more fractions. You can use the Least Common Denominator (___ _) to
\qquad fractions. You can
also use a \qquad

Order the set $\{3.44, \pi, 3.14,3 . \overline{4}\}$ from least to greatest.

Chapter 4: Rational Numbers - Lesson 2: Compare and Order Rational Numbers
Fill in the \bigcirc with \langle,$\rangle , or = to make the$ sentence true.
$\frac{7}{12} \bigcirc \frac{8}{18}$

Fill in the \bigcirc with \langle, , or $=$ to make the sentence true.
$\frac{1}{5} \bigcirc \frac{7}{50}$

A rational number is a \qquad that can be expressed as a
\qquad of \qquad integer
written as a fraction, in which the denominator is not \qquad .

A \qquad denominator is a common \qquad of the denominators of or more fractions. You can use the Least Common Denominator (___ _) to fractions. You can

Order the set $\left\{23 \%, 0.21, \frac{1}{4}, \frac{1}{5}\right\}$ from least to greatest.

Chapter 4: Rational Numbers - Lesson 3: Add and Subtract Like Fractions
Add. Write in simplest form.

$$
\frac{5}{9}+\frac{2}{9}=
$$

Sofia ate $\frac{5}{8}$ of a cheese pizza. Jack ate $\frac{2}{8}$ of a cheese pizza and $\frac{6}{8}$ of a pepperoni pizza. How much pizza did Sofia and Jack eat together?

To add or subtract \qquad fractions, add or subtract the numerators and write the result over the \qquad .

Find

$$
\begin{aligned}
& \frac{5}{10}+\frac{2}{10}=\frac{5+2}{10} \\
& \frac{a}{c}+\frac{b}{c}=\frac{a+b}{c} \\
& \frac{11}{12}-\frac{4}{12}=\frac{11-4}{12} \\
& \frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}
\end{aligned}
$$

$-\frac{5}{8}-\frac{3}{8}=$

$$
\frac{5}{8}-\frac{7}{8}=
$$

Chapter 4: Rational Numbers - Lesson 3: Add and Subtract Like Fractions

Add. Write in simplest form.

$$
\frac{1}{3}+\frac{2}{3}=
$$

$$
-\frac{2}{5}+-\left(\frac{2}{5}\right)=
$$

Eduardo used fabric to make three $\frac{1}{4}$ costumes. He used $\frac{2}{4}$ yard for the first, yard for the second, and $\frac{3}{4}$ yard for the third costume. How much fabric did Eduardo use altogether?

Find
To add or subtract \qquad fractions, add or subtract the numerators and write the result over the \qquad .

$$
\begin{aligned}
& \frac{5}{10}+\frac{2}{10}=\frac{5+2}{10} \\
& \frac{a}{c}+\frac{b}{c}=\frac{a+b}{c} \\
& \frac{11}{12}-\frac{4}{12}=\frac{11-4}{12} \\
& \frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}
\end{aligned}
$$

Of the 50 states in the United States, 14 have an Atlantic Ocean coastline and 5 have a Pacific Ocean coastline. What fraction of the U.S. states have either an Atlantic Ocean or Pacific Ocean coastline?
$-\frac{5}{9}-\frac{2}{9}=$

Find

Find

$$
-\left(\frac{3}{4}+\frac{5}{9}\right)+\frac{7}{4}=
$$

To \qquad or \qquad fraction with \qquad denominators rename the fractions using the least \qquad denominator (_ _ _), add or subtract as with like fractions, and if needed simplify the sum or difference.

Use the table to find the fraction of the total population that has type A or type B blood.
$-\frac{2}{3}-\frac{1}{2}=$

ABO Type	O	A	B	$A B$
Fraction	$\frac{11}{25}$	$\frac{21}{50}$	$\frac{1}{10}$	$\frac{1}{25}$

Find

Find

$$
\frac{2}{5}+\left(\frac{4}{7}+\frac{3}{5}\right)=
$$

To \qquad or \qquad fraction with \qquad denominators rename the fractions using the least \qquad denominator (_ _ _), add or subtract as with like fractions, and if needed simplify the sum or difference.

Find

Use the table to find the fraction of the total population that has type O or type $A B$ blood.
$\frac{5}{8}-\frac{1}{4}=$

ABO Type	O	A	B	$A B$
Fraction	$\frac{11}{25}$	$\frac{21}{50}$	$\frac{1}{10}$	$\frac{1}{25}$

Find $7 \frac{4}{9}+10 \frac{2}{9}$. Write in simplest form.

Find $8 \frac{5}{6}-2 \frac{1}{3}$. Write in simplest form.

To add or subtract \qquad numbers, first add or subtract the
\qquad If necessary, rename them using the \qquad . Then add or subtract the \qquad numbers and \qquad if necessary.

Find
$2 \frac{1}{3}-1 \frac{2}{3}$

Sometimes when you subtract mixed numbers the fraction in the first mixed number is \qquad than the fraction in the second mixed number. In this case, \qquad one or both fractions in order to subtract.

An urban planner is designing a skateboard park. The length of the skateboard park is $120 \frac{1}{2}$ feet. The length of the parking lot is $40 \frac{1}{3}$ feet. What will be the length of the park and the parking lot combined?

Find $6 \frac{1}{8}+2 \frac{5}{8}$. Write in simplest form.

Find $5 \frac{4}{5}-1 \frac{3}{10}$. Write in simplest form.

To add or subtract \qquad numbers, first add or subtract the them using the . If necessary, rename subtract the
\qquad . Then add or
\qquad numbers and \qquad if necessary.

Sometimes when you subtract mixed numbers the fraction in the first mixed number is \qquad than the
fraction in the second mixed number. In this case, \qquad one or both fractions in order to subtract.

A dog's bowl holds $1 \frac{1}{2}$ cups of dog food. The dog ate $\frac{2}{3}$ cups of dog food. How much dog food is left in the bowl?

Multiply. Write in simplest form.

$$
\frac{1}{2} \times \frac{1}{3}
$$

Multiply. Write in simplest form.

$$
2 \times\left(-\frac{3}{4}\right)
$$

When multiplying two write the product in
\qquad , form. The numerator and denominator of either fraction may have common . If this is the case, you can \qquad before

Find the answer, and write in simplest form.
$\frac{1}{2} \times 4 \frac{2}{5}$

When multiplying by a \qquad number, you can rename the mixed number as an \qquad
fraction. You can also multiply mixed numbers using the \qquad Property and \qquad math.

Humans sleep about $\frac{1}{3}$ of each day. Let each year equal $365 \frac{1}{4}$ days. Determine the number of days inn a year the average human sleeps.

Multiply. Write in simplest form.

$$
\frac{3}{5} \times \frac{1}{2}
$$

Multiply. Write in simplest form.

$$
\frac{2}{3} \times(-4)
$$

When multiplying two write the product in \qquad form. The numerator and denominator of either fraction may have common
\qquad . If this is the case, you can \qquad before

Find the answer, and write in simplest form.
$-1 \frac{7}{8} \times\left(-2 \frac{2}{5}\right)$

When multiplying by a \qquad number, you can rename the mixed number as an \qquad
fraction. You can also multiply mixed numbers using the Property and \qquad math.

The pygmy shrew eats $1 \frac{\mathbf{1}}{\mathbf{4}}$ times its body weight each day. If a pygmy shrew weighs $\frac{1}{6}$ of an ounce determine the number of ounces it eats a day.

Chapter 4: Rational Numbers - Lesson 7: Convert Between Systems

Convert 17.22 inches to centimeters. Round to the nearest hundredth if necessary.

Convert 5 kilometers to miles. Round to the nearest hundredth if necessary.
\qquad in.

5 km \qquad

Convert 4.25
kilograms to pounds. Round to the nearest hundredth if necessary.

You can
 \qquad by fractions

 to convert between \qquad andunits.

Customary	Metric
1 inch (in)	2.54 centimeters (cm)
1 foot (ft)	0.30 meter (m)
1 yard (yd)	0.91 meter (m)
1 mile (mi)	1.61 kilometers (km)
1 pound (lb)	453.6 grams (g)
1 pound (lb)	0.4536 kilogram (kg)
1 ton (T)	907.2 kilograms (kg)
1 cup (c)	236.59 milliliters (mL)
1 pint (pt)	473.18 milliliters (mL)
1 quart (qt)	946.35 milliliters (mL)
1 gallon (gal)	3.79 liters (L)

An Olympic-size swimming pool is 50 meters long. About how many feet long is the pool?

Complete. Round to the nearest hundredth if necessary.

Complete. Round to the nearest hundredth if necessary.

Complete. Round to the neares \dagger hundredth if necessary.
\qquad by fractions to convert between \qquad and units.

Customary	Metric
1 inch (in)	2.54 centimeters (cm)
1 foot (ft)	0.30 meter (m)
1 yard (yd)	0.91 meter (m)
1 mile (mi)	1.61 kilometers (km)
1 pound (lb)	453.6 grams (g)
1 pound (lb)	0.4536 kilogram (kg)
1 ton (T)	907.2 kilograms (kg)
1 cup (c)	236.59 milliliters (mL)
1 pint (pt)	473.18 milliliters (mL)
1 quart (qt)	946.35 milliliters (mL)
1 gallon (gal)	3.79 liters (L)

Ms. Meyers was collecting 2L soda bottles for a class project. About how many gallons could each bottle hold?
7.44 c
 1 c
\qquad $L \cdot \frac{1 \mathrm{gal}}{L}$

Find $\frac{1}{3} \div 5$

Find $\frac{3}{4} \div\left(-\frac{1}{2}\right)$.
Write in simplest form.

To divide by a \qquad , multiply by its multiplicative

$$
\begin{aligned}
& \frac{7}{8} \div \frac{3}{4}=\frac{7}{8} \cdot \frac{4}{3} \\
& \frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}
\end{aligned}
$$

Find the answer, and write in simplest form.
$\frac{2}{3} \div 3 \frac{1}{3}$
To divide by a \qquad number, first rename the mixed number as a fraction greater than \qquad . Then multiply the \qquad fraction by the reciprocal, or multiplicative inverse, of the \qquad fraction.

The side pieces of a butterfly house are $8 \frac{1}{4}$ inches long. How many side piece can be cut from a board measuring $49 \frac{1}{2}$ inches long?

Find $-\frac{4}{5} \div \frac{8}{9}$.

Find $-\frac{5}{6} \div\left(-\frac{2}{3}\right)$.
Write in simplest form.

Find the answer, and write in simplest form.
$-\frac{3}{4} \div 1 \frac{1}{2}$

To divide by a \qquad . multiply by its multiplicative

$$
\begin{aligned}
& \frac{7}{8} \div \frac{3}{4}=\frac{7}{8} \cdot \frac{4}{3} \\
& \frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}
\end{aligned}
$$

To divide by a \qquad number, first rename the mixed number as a fraction greater than \qquad . Then multiply the \qquad fraction by the reciprocal, or multiplicative inverse, of the \qquad fraction.

A choker style necklace is about $16 \frac{3}{4}$ inches long. How many necklace cords can be cut from a wire measuring $105 \frac{1}{2}$ inches long?

Chapter 5

Athletic trainers use the formula $\frac{3(220-a)}{5}$, where a is a person's age, to find their minimum training heart rate. Find Latrina's minimum training heart rate if she is 15 years old.

A variable is a \qquad that represents an unknown quantity. An algebraic expression, such as $n+2$, is an expression that contains \qquad , \qquad , and at least one \qquad .

In algebra, the \qquad omitted. Ex: 6d 9st sign is often

Marisa wants to buy a DVD player that costs $\$ 150$. She already saved \$25 and plans to save an additional \$10 each week. Write an expression that represents the

The numerical factor of a multiplication expression that contains a variable is called a
\qquad . So \qquad is the coefficient
of 6d.
To translate a \qquad phrase into an \qquad expression, the first step is to define a variable butt choosing a variable to represent an unknown quantity.

Using your expression from the previous problem, will Marisa have saved enough money to buy the $\$ 150$ DVD player in 11 weeks?
total amount of money Marisa has saved after any number of weeks.

Words: \qquad

Variable: \qquad
Expression: \qquad

Evaluate $2(n+3)$ if $n=-4$.

To find the area of a triangle, use the formula $\frac{b h}{2}$, where b is the base and h is the height. What is the area in square inches of a triangle with a height of 6 inches and a base of 8 inches.

An MP3 player costs $\$ 70$ and song downloads cost $\$ 0.85$ each. Write an expression that represents the cost \dagger of the MP3 player and x number of downloaded songs.

A variable is a \qquad that represents an unknown quantity. An algebraic expression, such as $n+2$, is an expression that contains \qquad , \qquad , and at least one \qquad .

In algebra, the \qquad omitted. Ex: 6d 9st sign is often a^{3} The numerical factor of a multiplication expression that contains a variable is called a
\qquad . So \qquad is the coefficient of 6d.

To translate a \qquad phrase into an \qquad expression, the first step is to define a variable butt choosing a variable to represent an unknown quantity.

Using your expression from the previous problem, find the total cost if 20 songs are downloaded.

Words: \qquad

Variable: \qquad
Expression: \qquad

Chapter 5: Expressions - Lesson 2: Sequences

Describe the relationship between the terms in the arithmetic sequence $0.4,0.6$, $0.8,1.0, \ldots$. . Then write the next three terms in the sequence.

Describe the relationship: \qquad

Next three terms: \qquad , \qquad ,
\qquad

A sequence is an \qquad list of numbers. Each number in a sequence is called a
\qquad . In an arithmetic sequence, each term is found by adding the \qquad number to the previous term.

In an arithmetic sequence, the terms can be whole \qquad , \qquad or

Describe the relationship between the terms in the arithmetic sequence $8,13,18$, $23, \ldots$. Then write the next three terms in the sequence.
\qquad .

You can write an \qquad expression to represent the relationship between any term in a sequence and its \qquad in the sequence.

Consider the sequence $2,4,6,8, \ldots$ In this case if \qquad represents the position in the sequence, the value of the term is \qquad .

Describe the relationship between the terms in the arithmetic sequence $0,13,26$, 39, Then write the next three terms in the sequence.

Describe the relationship: \qquad

Next three terms: \qquad , \qquad , \qquad

The greeting cards that Meredith makes are sold in boxes at a gift store. The first week, the store sold 5 boxes. Each week the store sells five more boxes. The pattern continues.

What algebraic

Describe the relationship: \qquad

Next three terms: \qquad , \qquad , $\underline{\square}$ expression can be used to find the total number of boxes sol at the end of the $100^{\text {th }}$ week? What is the total?

Position	Operation	Value of Term
1	1.5	5
2	2.5	
3		
n		
100		

Chapter 5: Expressions - Lesson 2: Sequences

Describe the relationship between the terms in the arithmetic sequence $4,7,10$, $13, \ldots$. Then write the next three terms in the sequence.

Describe the relationship: \qquad

Next three terms: \qquad , \qquad ,
\qquad

A sequence is an \qquad list of numbers. Each number in a sequence is called a
\qquad . In an arithmetic sequence, each term is found by adding the \qquad number to the previous term.

In an arithmetic sequence, the terms can be whole \qquad , \qquad or

Describe the relationship between the terms in the arithmetic sequence 2.5, 3.0, $3.5,4.0, \ldots$... Then write the next three terms in the sequence.

Describe the relationship: \qquad
You can write an \qquad expression to represent the relationship between any term in a sequence and its \qquad in the sequence.

Consider the sequence $2,4,6,8, \ldots$ In this case if __ represents the position in the sequence, the value of the term is \qquad .
Describe the relationship between the terms in the arithmetic sequence 1.0, 1.3, $1.6,1.9, \ldots$. Then write the next three terms in the sequence.

Describe the relationship: \qquad

Next three terms: \qquad , \qquad ,都

Name the property shown by the following statement.
$2 \cdot(5 \cdot n)=(2 \cdot 5) \cdot n$

State whether the following conjecture is true or false. If false provide a counterexample.

Division of whole numbers is commutative.

Alana wants to buy a sweater that costs \$38, sunglasses that costs \$14, a pair of jeans that costs $\$ 22$, and a T-shirt that costs $\$ 16$. Use mental math to find the total cost before tax.

Simplify the expression. Justify each step using one of the listed properties or identities.
$(7+9)+5$

Name the property shown by the following statement.
$42+x+y=42+y+x$

State whether the following conjecture is true or false. If false provide a counterexample.

The difference of two different whole numbers is always less than both of the two numbers.
true false

Lance made four phone calls from his cell phone today. The calls lasted 4.7, 9.4, 2.3 , and 10.6 minutes. Use mental math to find the total amount of time he spent on the phone.

Commutative Property: The order in which numbers are added or multiplied does not change the sum.

$$
\left.a+b={ }_{-}^{+} \quad a \cdot b=\right]_{-}
$$

Associative Property: The way in which numbers are grouped when they are added or multiplied does not change the sum or product.

$$
a+(b+c)=\left(+_{+}\right)+_{-} \quad a \cdot(b \cdot c)=\left(C_{-}\right) \cdot{ }_{-}
$$

Additive Identity: When 0 is added to any number, the sum is the number.

$$
a+0=Z_{-} \quad 0+a={ }_{-}
$$

Multiplicative Identity: When any number is multiplied by 1 , the product is the number.

$$
a \cdot 1={ }_{-} \quad 1 \cdot a=
$$

Multiplicative Property of Zero: When any number is multiplied by 0 , the product is 0 .

$$
a \cdot 0==_{-} \quad 0 \cdot a=
$$

Simplify the expression. Justify each step using one of the listed properties or identities.
$(m \cdot 9) \cdot m$

Use the Distributive Property to evaluate $8(-9+4)$.

Use the Distributive Property to rewrite each expression.

$$
(m+3 n) 8
$$

The \qquad Property states that to \qquad a sum or difference by a number, multiply each term \qquad the parentheses by the number \qquad the parentheses.

$$
\begin{array}{cc}
a(b+c)=a b+a c & a(b-c)=a b-a c \\
4(6+2)=4 \cdot 6+4 \cdot 2 & 3(7-5)=3 \cdot 7+3 \cdot 5
\end{array}
$$

The expressions $2(x+2)$ and $2 x+4$ are
\qquad expressions.

Mr. Ito needs to buy batting helmets for the baseball team. The helmets he plans to buy are $\$ 19.95$ each. Find the total cost if
Mr. Ito needs to buy 9 batting helmets for the team.

Use the Distributive Property to evaluate 7(10-5).

Use the Distributive Property to rewrite each expression.
$5(-3 x+7 y)$

The \qquad Property states that to \qquad a sum or difference by a number, multiply each term \qquad the parentheses by the number \qquad the parentheses.

$$
\begin{array}{cc}
a(b+c)=a b+a c & a(b-c)=a b-a c \\
4(6+2)=4 \cdot 6+4 \cdot 2 & 3(7-5)=3 \cdot 7+3 \cdot 5
\end{array}
$$

Use the
Distributive
Property to rewrite each expression.
$-2(x-8)$

A sports club rents dirt bikes for $\$ 37.50$ each. Find the total cost for the club to rent 20 bikes. Justify your answer by using the Distributive Property.

Identify the terms, like terms, Write $7 x-2-7 x+6$ in simplest form. coefficients, and constants in the expression $6 n-7 n-4+n$.

When \qquad or \qquad signs separate an algebraic expression into parts, each part is called a \qquad . Recall that the numerical factor of a term that contains a variable is called the of the \qquad .

Like terms contain the \qquad variables to the \qquad powers. For
The cost of a jacket j after a 5\% markup can be represent by the expression j + 0.05j. Simplify the expression. Then determine the total cost of the example, $3 x^{2}$ and $-7 x^{2}$ are like terms. So are $8 x y^{2}$ and $12 x y^{2}$. But $10 x^{2} z$ and $22 x z^{2}$ are not like terms. A term without a variable is called a \qquad . Constant terms are also jacket after the markup, if the original terms.

An algebraic expression is in simplest form if it has no like \qquad and no -. price is $\$ 35$.

Identify the terms, like terms, Write $6-3 n+3 n$ in simplest form. coefficients, and constants in the expression $9 y-4-11 y+7$.

When \qquad or \qquad signs separate an algebraic expression into parts, each part is called a \qquad _. Recall that the numerical factor of a term that contains a variable is called the of the \qquad .

Like terms contain the \qquad variables to the \qquad powers. For example, $3 x^{2}$ and $-7 x^{2}$ are like terms. So are $8 x y^{2}$ and $12 x y^{2}$. But $10 x^{2} z$ and $22 x z^{2}$ are no \dagger like terms. A term without a variable is called a \qquad . Constant terms are also terms.

An algebraic expression is in simplest form if it has no like \qquad and no
\qquad jacket after the markup, if the original price is $\$ 35$.

Add.

$$
(2 x+3)+(x+4)
$$

$$
(2 x-1)+(x-5)
$$

A \qquad expression is an algebraic expression in which the variable is raised to the \qquad power.

Linear Expression	Nonlinear Expressions
$5 x$	$5 x^{2}$
$3 x+2$	$3 x^{3}+2$
$x-7$	$x^{4}-7$

You can \qquad linear expressions with or without \qquad Sometimes you will need to use \qquad pairs.

Write a linear expression in simplest form to represent the perimeter of the tringle. Find the perimeter if the value of x is 5 centimeters.

$(5 x) \mathrm{cm}$

Add.
$(3 x-5)+(2 x-3)$

Add.

$$
(2 x-4)+(3 x-7)
$$

A \qquad expression is an algebraic expression in which the variable is raised to the \qquad power.

Linear Expression	Nonlinear Expressions
$5 x$	$5 x^{2}$
$3 x+2$	$3 x^{3}+2$
$x-7$	$x^{4}-7$

You can \qquad linear expressions with or without \qquad Sometimes you will need to use \qquad pairs.

Add. Use models if needed.
$(x-4)+(-2 x+1)$

Subtract. Use models if needed. $(2 x-3)-(x-2)$

Find $(-2 x-4)-(2 x)$. Use models if needed.

When \qquad linear expressions, subtract like terms. Use pairs if needed.

When subtracting integers, add the
\qquad or the

The same process is used when subtracting linear expressions.

A hat store tracks the sales of college and professional team hats for m months. The number of college hats sold is represented by ($6 m+3$). The number of professional hats sold is represented by ($5 m-2$). Write an expression to show how many more college hats were sold than professional hats. Then evaluate the expression if m equals 10.

Subtract. Use models if needed.

$$
(6 x+3)-(2 x+2)
$$

When \qquad linear expressions, subtract like terms. Use pairs if needed.

When subtracting integers, add the
\qquad , or the

The same process is used when subtracting linear expressions.

Find
$(4 x-3)-(2 x+7)$.

Find the GCF of each pair of monomials.
$4 x=$ \qquad -
$12 x=$ \qquad -_. \qquad -

The GCF is \qquad

Find the GCF of each pair of monomials.
$18 a=$ \qquad . \qquad . \qquad . \qquad
$20 a b=$ \qquad
\qquad - \qquad . \qquad
\qquad

The GCF is \qquad

Factor $3 x+9$
$3 x=$ \qquad - _
$9=$ \qquad - \qquad

The GCF is \qquad $15 x=$ \qquad - \qquad $18=$ \qquad . \qquad .
\qquad

Find the GCF of each pair of monomials.
$12=$ \qquad -- _
$28 c=$ \qquad . \qquad -_

The GCF is \qquad

Find the GCF of each pair of monomials.
$25 x=$ \qquad . \qquad -
$15 x y=$ \qquad - \qquad -

The GCF is \qquad

A monomial is a number, a variable, or a variables. of a number and one or more

Monomials	Not Monomials
$25, x, 40 x$	$x+4,40 x+120$

To factor a number means to write it as a of its \qquad A monomial can be factored using the same method you would use to factor a number.

Factor $12 x+7 y$.
The greatest common factor (_ _) of two monomials is the greatest monomial that is a factor of \qquad -.

You can use the Distributive Property and the work backward strategy to express a linear expression as a \qquad of its factors.
$4 x=$ \qquad ._. -
$-28=$ \qquad - \qquad \cdot

The GCF is \qquad $12 x=$ \qquad - _ - _ $7 y=$ \qquad ._. \qquad
\qquad

